

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY – CH5

SUMMER 2013 MARK SCHEME

Q.1	(a)	Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation			
	- do not accept CFCs			Cs	[1]
	(b)	(i)	$\mathcal{K}_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} m$	ust be square brackets	[1]
		(ii)	$K_{\rm c} = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$	follow through error (ft)	[1]
		(iii)	$K_{\rm c}$ has no units	ft	[1]
	(iv) when temperature increases K_c increases (1)			es $K_{\rm c}$ increases (1)	
			this means equilibrium has / increasing temperature fa	moved to RHS avours endothermic reaction (1)	
			therefore ΔH for forward re (mark only awarded if mar		[3]
	<i>(c)</i> (i) +2		+2		[1]
		(ii)	co-ordinate/ dative (covale	nt)	[1]
		(iii)	pink is $[Co(H_2O)_6]^{2+}$ and bl	ue is [CoCl ₄] ²⁻ (1)	
(ligand is) Cl⁻ (1)					
	(addition of HCl sends) equilibrium to RHS (1) (iv) $[Co(H_2O)_6]^{2+}$ shown as octahedral [with attempt at 3D] (1)			uilibrium to RHS (1)	[3]
				ahedral [with attempt at 3D] (1)	
			[CoCl ₄] ²⁻ shown as tetrahe	dral/ square planar (1)	[2]

Total [14]

Q.2	(a)	(i)	tangent drawn at t = 40 (1)		
			rate calculated 0.017 to 0.027 (ignore	e units) (1)	[2]
		(ii)	as reaction proceeds less collisions (per unit time) occur	[1]
	(b)	(i)	1 st order shown by:		
			calculation of rates at at least 2 conc	entrations (1)	
			statement rate α concentration (1)		
			OR		
			constant half-life (1)		
			half-life is 24 minutes (1)		[2]
		(ii)	rate = $k[N_2O_5]$ (1)		[1]
		(iii)	k = rate (from (i))/ $[N_2O_5]$ (from graph (mark correct numbers – no need to		
			units = minutes ⁻¹ (1) f	t from (ii)	[2]
		(iv)	(student A more likely to be correct) r rate determining step	reaction is 1^{st} order and 1 [N ₂ O ₅] invo	olved in [1]
	(c)	correct curve starting at 100 kPa and becoming horizontal (1) horizontal at 250 kPa (1)			
					[2]
				Tota	l [11]

PMT

Q.3	(a)	an acid	d is a proton / H⁺ donor	[1]	
	(b)	pH = -	$\log[H^{\star}]$ / negative log of hydrogen ion concentration	[1]	
	(c)	a low p	pH corresponds to a high concentration of $H^{+}(1)$		
		a stror	ng acid is totally dissociated whilst a weak acid is partially dissociated (1)		
		need t	o consider concentration (of acid solution) as well as strength of the acid (1)		
		a concentrated solution of a weak acid could have a lower pH than a dilute solution of a strong acid (1) [4]			
		QWC Accuracy of spelling, punctuation and grammar QV			
	(d)	(i)	$K_{a} = \frac{[HCOO^{-}][H^{+}]}{[HCOOH]}$	[1]	
		(ii)	$1.75 \times 10^{-4} = \frac{x^2}{0.1}$ (1)		
			$x = 4.183 \times 10^{-3}$ (1)		
			pH = 2.38 (1)	[3]	
	(e)	(i)	buffer	[1]	
		(ii)	RCOOH \rightleftharpoons RCOO ⁻ + H ⁺ and RCOONa → RCOO ⁻ + Na ⁺ (1)		
			added H ⁺ removed by salt anion/ A ⁻ + H ⁺ \rightarrow HA (1)		
			added OH ⁻ removed by acid/ OH ⁻ + HA \rightarrow A ⁻ + H ₂ O (1)	[3]	
				Total [15]	

PMT

Q.4 (a) diagram with labels to show

		H_2/H^+ shown in electrode (1)	
		platinum (in both electrodes) (1)	
		Fe²⁺(aq) and Fe³⁺(aq) (1)	
		high resistance voltmeter (1)	
		salt bridge (1)	
		gas at 1atm pressure, solutions of concentration 1 mol dm^{-3} , temperature 298K (1)	
		[any 5]	[5]
(b)	(i)	successive ionisation energies increase gradually/ the energies of the d orbitals ar similar	e [1]
	(ii)	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}$ / $3d^{10}4s^{2}$	[1]
	(iii)	after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high	[1]
(c)	(i)	violet solution contains V^{2+} (1)	
		SEP Zn ²⁺ / Zn is more negative than VO ₃ ^{-/} / VO ²⁺ and VO ²⁺ / V ³⁺ and therefore	
		releases electrons/ VO_3^{-}/VO^{2+} and VO^{2+}/V^{3+} are more positive than	
		Zn ²⁺ / Zn and are stronger oxidising agents (1)	
		V^{2+} cannot be reduced (to V) since SEP is more negative than Zn ²⁺ / Zn (1)	[3]
	(ii)	1.1V (ignore sign)	[1]
	(iii)	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direct	ion [1]
	(iv)	if Zn ²⁺ (aq) concentration increased equilibrium moves to LHS (1)	
		so electrode potential becomes less negative (1)	[2]

Total [20]

(d)(i)
$$2.74 \times 10^{-3}$$
 (mol)[1](ii) 1.37×10^{-3} (mol)[1](iii) $M_r KIO_3 = 214.1$ [1]moles $KIO_3 = 0.978/214.1 = 4.57 \times 10^{-3}$ in 250 cm³[1] 4.57×10^{-4} in 25 cm³[1](iv) $1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3$ (1)equation 1 is correct since 3 moles of iodine formed (mark awarded for reason) (1) [2]

PMT

Q.5	(a)	(i)	atomisation of magnesium / vaporisation of magnesium	[1]	
		(ii)	increased ratio positive charge on nucleus: number of electrons	[1]	
		(iii)	is positive because the (negative) electron is repelled by negative species	[1]	
		(iv)	lattice enthalpy is –3835(kJ mol ⁻¹) numerical value (1) negative sign (1)	[2]	
	(b)	(i)	gases are more random/ have more disorder / move more freely and therefore have higher entropy	e a [1]	
		(ii)	$\Delta S = 21.8 (JK^{-1}mol^{-1})$	[1]	
		(iii)	$\Delta G = \Delta H - T \Delta S (1)$ ft from (ii)		
			ΔG must be –ve if reaction to be spontaneous/ to calculate T make ΔG = 0 (1)		
			0 = 318000 – T 21.8 T = 14587/14600 (K) (1)	[3]	
	(c)	use of	aqueous sodium hydroxide (1)		
		white precipitate for all possible ions (1) excess aqueous sodium hydroxide – precipitate dissolves for Pb^{2+} and Al^{3+} (1) use of aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble chloride/ soluble sulfate (1) result – yellow ppt for $Pb^{2+} + l^{-}$ and no ppt for Al^{3+} / white ppt for $Pb^{2+} + Cl^{-}$ or SO_4^{2-}			
		and no	and no ppt for Al ³⁺ [result for both needed] (1)		
		QWC	Organisation of information clear and coherent (1)		
		Use of specialist vocabulary (1)			
	(d)	(i)	diagram to show central AI, 4 CI and 4 shared pairs of electrons, all CI outer electrons, dative pair identifiable	[1]	
		(ii)	chlorination of benzene (1) produces Cl^{+} as electrophile (1)		
		OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evaporat			
			in use (1)		
			OR catalyst (1) in polymerisation of alkenes (1)	[2]	
			Total	[20]	